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ABSTRACT
A ventilator-management advisor (VMA) is a com-
puter program that monitors patients who are treated
with a mechanical ventilator A VMA implements a
patient-specific physiologic model to interpret patient
data and to predict the effects ofalternative control
settingsfor the ventilator Because a VMA evaluates
its physiologic model repeatedly during each cycle of
data interpretation, highly complex models may
require more computation time than is available in
this time-critical application. On the other hand, less
complex models may be inaccurate if they are unable
to represent a patient's physiologic abnormalities. For
each patient, a VMA should select a model that bal-
ances the tradeoffofprediction accuracy and compu-
tation-time complexity.
I present a method to select models that are at an
appropriate level ofdetailfor time-constrained deci-
sion tasks. The method is based on a local search in a
graph ofmodels (GoM) for a model that maximizes
the tradeoffof computation-time complexity and pre-
diction accuracy. For each model under consider-
ation, a beliefnetwork computes a probability of
model adequacy given the qualitative prior informa-
tion, and the goodness offit of the model to the data
provides a measure of the conditional probability of
adequacy given the quantitative observations.
I apply this method to the problem ofmodel selection
fora VMA. I describe an implementation ofa graph of
physiologic models that range in complexityfrom
VentPlan, a simple model with 3 compartments, to
VentSim, a multicompartment model with detailed air-
way, circulation and mechanical ventilator compo-
nents. I demonstrate how the model-selection method
selects dynamically, from this GoM, models that are
likely to meet the accuracy requirement ofa VMA.

THE VENTILATOR-MANAGEMENT ADVISOR
MODELING PROBLEM

A ventilator-management advisor (VMA) is a comput-
er program that monitors patients in an intensive-care
unit (ICU) who are treated with a mechanical ventila-
tor. AVMA implements a patient-specific physiologic
model to interpret patient observations and to predict
the effects of alternative proposed ventilator settings.

A VMA evaluates this model repeatedly during each
cycle of fitting the model to the data and of searching
for the computed optimal ventilator settings [15].
AVMA should incorporate prediction models that are
accurate, yet tractable for use in this real-time patient-
care application. A model that is highly complex re-
quires longer computation time, and delays the data in-
terpretation and treatment recommendation. On the
other hand, a simplified model provides less accurate
predictions of the effects of changes in the ventilator
settings if it is unable to represent a specific patient's
physiologic abnormalities. Ideally, a VMA would ap-
ply a model that balances the tradeoff of prediction ac-
curacy and computation-time complexity for each
patient it monitors.

AUTOMATED MODEL SELECTION
There is a growing interest in methods to automate the
tasks of creating and applying models that are at an ap-
propriate level of detail [8]. One interesting approach
is to organize a set of alternative models as a graph. In
agraph ofmodels (GoM), nodes represent models, and
arcs represent the simplifying assumptions that distin-
guish adjacent models [ 1]. In the GoM formulation, a
search algorithms explores the arcs from unsuitable
models to adjacent models by evaluating the conse-
quences of asserting or retracting the corresponding
simplifying assumptions.
The assumptions for model selection in the GoM are
categorical. In situations where all available models
violate at least one assumption, there is no method to
reason about the degree of assumption violation, or to
find the model with the least severe violations. Prior
investigators demonstrated that the GoM is a powerful
tool to organize the search for a model that satisfies all
modeling constraints. These investigators have not at-
tempted to compare multiple models that satisfy all
constraints, but rather stop the search when the first
satisfying model is found [1,19,20].

Optimal Model Selection under a Time Constraint
To apply the GoM formalism to the selection of mod-
els for a time-critical, model-based decision system,
such as a VMA, requires that we compare a model's
expected prediction accuracy with the computation-
time delay that the model imposes. The optimal model
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for a time-critical application represents a tradeoff of
prediction accuracy and computation-time complexity.
I previously described a time-dependent, decision an-
alytic definition of the optimal model to select under a
time constraint. This definition is based on the integral
over time of the value of alternative model selections
[ 14]. Unfortunately, no definition ofthe optimal model
is helpful for a real-time model-selection algorithm if
we are unable to evaluate all models within the time
available for model selection.
The GoM formalism provides a method to organize a
set of alternative models, and to guide a heuristic
search for a model that is likely to be optimal. The def-
inition of the optimal model provides a means to assess
(retrospectively) the performance of the heuristic
search algorithm.
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Figure 1. A graph of models for a ventilator-
management advisor. Nodes represent models, and
arcs represent the simplifying assumptions that
separate the adjacent models. The models are
arranged from the most complex model (VentSim)
that makes no additional assumptions, to the least
complex model (VentPlan) that makes three
additional assumptions. More complex models are
shown as larger circles. Upper-case and lower-case
model subscripts indicate greater and lesser levels of
detail in the corresponding components: C, c:
circulation-compartment component; A, a: airway
component; V, v: ventilator component.

Heuristic Model Selection under a Time Constraint
A local search within the GoM, for a model that is like-
ly to be optimal, is guided by a search metric that com-
bines a measure of a model's cost and a measure of the
model's benefit.
Cost of a Model Selection. The cost of a model is a
function of the computation-time delay that the model

imposes. This computation-time delay has two compo-
nents: t,,,del, the time taken to fit the model to the ob-
servations (to make the model system-specific), and
tse,rch, the time required to perform the search for the
optimal control settings, once the system-specific
model parameters are known.
An exponential function is useful to represent the cost
ofthe time delay for time-critical control decisions [5].
I set

Cost(t ) = Cet/k (1)
in which t is the time delay relative to t = 0, k is a time
constant that specifies the time constraint, and C is a
scaling constant. If a model is selected at t = 0, the cost
of the model is COSt(t*,)del + tsearch). Once a model is
fitted to the data, the cost of generating that model's
control recommendation is the incremental cost of
tsearch. The incremental cost of an additional time de-
lay St, after an initial time tl, is Cost(t1+St) - Cost(t1),
which increases as t1 increases.
Benefit of a Model Selection. The benefit of a model
is a result of the value of its control recommendations.
As the model-prediction accuracy increases, the con-
trol recommendations improve, and the value of the
model increases. At some level of accuracy, further in-
creases in accuracy do not change a model-based con-
trol-setting recommendation. That is, there is an
accuracy, greater than which no increase in value oc-
curs. This "maximum needed" prediction accuracy
varies according to the domain, and depends on a com-
plex interaction of the model predictions, control vari-
able settings, and the loss function (or value model)
used to optimize the control settings.
I define the event that a model M, is adequate as

Mi =q[Pr(|9(-Yobs| <£*) . 1 -BA] (2)

in which Yij is the ith-model prediction for thejth vari-
able, Yobsj is an observation of thejth variable, £ is a
small scaling constant, ay is the standard deviation of
observations of thejth variable, and 0 > SA< 1, is the
constant that describes the threshold probability of
adequacy.
This definition states that a model is adequate if there
is a high probability that all of its predictions are with-
in the limits of the error distributions for the observa-
tions. The scaling factors cs; allow the level of accuracy
required for each prediction variable to be adjusted
separately. For example, in a VMA, the value of rec-
ommendations for the settings of the ventilator is more
sensitive to the partial pressure of oxygen (PaO2) than
it is to the partial pressure of carbon dioxide (PaCO2).
The ayj for PaO2 would be set to a smaller value than
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the aj for the PaCO2, and models that are relatively less
accurate for predicting PaCO2 would meet the defini-
tion of adequacy.

Probability of Model Adequacy
As a metric of how well a model fits the observations,
I use the posterior probability of model adequacy, giv-
en all quantitative observations and qualitative infor-
mation about the system being modeled. This
probability is a measure of how well a model fits the
observations. A model that fits the observations well is
more likely to make accurate predictions than is a
model that fits the observations poorly, and the proba-
bility of model adequacy is a measure of the benefit of
a model in a control application.
I compute the posterior probability that a model is ad-
equate as

Pr(MAly) = k Pr(MA) Pr(yIMA),i y iA

adequacy for the eight physiologic models shown in
Figure 1. This belief network takes as inputs the clini-
cal assessment of the physiologic diagnosis and com-
putes a prior probability of model adequacy for the set
of alternative models [6,10].
For example, if the node corresponding to the diagno-
sis of asthma is set to TRUE, the prior probabilities for
the models that lack an expanded representation of the
airways is decreased.

Conditional Probability of the Data Pr(yj MF)
Under the assumption that the observation errors are
unbiased and normally distributed, the weighted sum
of the squared residuals (WSSR) for the fit of a model
(Mi) to the data (y) is distributed as X2 with N-p de-
grees of freedom, whereNis the number of data points
and p is the number of fitted parameters [16]. That is,

(3)

in which ky = 1/ Pr(y), Pr(Mi ) is the prior proba-
bility that model i is adequate, andy is the vector of
quantitative observations of model variables.
Now, consider the event, Mc, that model Mi is a cor-
rect model. Because any correct model must also be
adequate, it follows that Pr(MAIy) >Pr(MUI Iy)
and

Pr(MAly) 2 k Pr(MA) Pr(yIM9). (4)
An estimate of a lower bound for the posterior proba-
bility of model adequacy is the prior probability of
model adequacy times the conditional probability of
the observations given that the model is correct.

Prior Probability of Model Adequacy Pr(Mi)
There are many ways that the prior probability of a
model being adequate could be assessed. For example,
the prior for each model could be assigned by the mod-
el builder at the time of model construction. A rule-
based expert system could modify the prior distribu-
tion according to the context of the model selection.
The rule-based approach is analogous to the constraint
satisfaction methods previously implemented for mod-
el selection [1,9,20].
A more powerful method for assessing Pr(M ) is to
represent the modeling constraints in a belief network.
I implemented a belief network to represent the effects
of ten clinical diagnoses on the probability of model

*. By "correct" model, I mean a model that produces
behavior indistinguishable from that of the system
being modeled. As Box said, "All models are wrong-
therefore we cannot proclaim a correct one." [3]

WSSR - Yj( bs) X N-p).
j=1 J

(5)

Pr(yj MA) is the likelihood of the model, which is
computed directly from the x2 distribution, as
Pr(Q (N-p) >= WSSR). For a correct model, as the
number of observations increases, the expected value
of the likelihood approaches 0.5, and so the maximum
expected value for a model with a prior of 1.0 is 0.5.
In summary, an approximate measure of the benefit of
a model is

Benefit(Mi) = Pr(MA) Min[0.5, Pr(yj MA) ]. (6)

Local Search in the Graph of Models
I organize a set of models as aGoM, in which the most
detailed model is at the top, and successive structural
simplifications lead to the least detailed model at the
bottom (see Figure 1).
To make a time-dependent model selection, the search
algorithm computes dynamically the benefit of each
model, and makes a decision after each model fit to
evaluate another model in the GoM, or to use the cur-
r.ent best model.
The following search algorithm makes dynamic model
selections under a time constraint:

1. At t = 0, consider the least complex model with a
prior probability that exceeds a threshold (1 - 8A).

2. Fit the model to the quantitative observations,
which advances the time to t = t + tmodel. Compute
the ratio of benefit to incremental cost of the addi-
tional time needed to make a control recommen-
dation, Benefit(Mi) / (Cost(t + tsearch) - Cost(t)).
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3. Examine the adjacent models in the GoM for
models that might provide an increase in the net
benefit. If the ratio of maximum possible increase
in benefit to expected incremental cost exceeds 1,
then go to step 2. Otherwise, select the current
model, or, if the benefit of the best model avail-
able within the time constraint does not meet a
minimum criterion of model adequacy, declare no
model selection.

After a recommendation is made, and until new obser-
vations occur, the search continues for a model with a
better fit to the existing data.

THE GRAPH OF MODELS FOR A VMA
I implemented the search algorithm to perform dynam-
ic selection of models under a time constraint within a
GoM of cardiopulmonary models that are suitable for
use in a VMA. Each model in the GoM is a series of
linked, first order difference equations that describe
the circulation of oxygen in the body (see Figure 1).
The GoM includes models that vary in their level of
detail from a simple, 3-compartment model (the Vent-
Plan model, Mcav) to a multicompartment model with
detailed airway, circulation and mechanical ventilator
components (the VentSim model, MCAV).

VentPlan: A Simplified Physiologic Model
The VentPlan model is an implementation of the sim-
plified 3-compartment model of oxygen transport
[ 13,18]. For ICU patients with a restricted range of
cardiopulmonary abnormalities, however, the VentP-
Ian model has reasonable prediction accuracy [15].
The VentPlan model makes 3 major assumptions that,
if violated, may cause the model to make inaccurate
predictions:

1. Airway assumption: The airway resistance and
thoracic compliance are near normal, and have a
distribution that is symmetric,

2. Circulation-compartments assumption: Any ven-
tilation to perfusion distribution (VA/Q) abnor-
mality is due entirely to a fixed shunting of blood
around the lungs, and

3. Ventilator assumption: The ventilator's driving
pressure can be approximated by a sine wave.

The VentPlan model is unable to represent certain
common physiologic abnormalities; the model's as-
sumptions describe the unmodeled abnormalities.
For example, the circulation-compartments assump-
tion describes the fact that perfusion and ventilation
occur in a single compartment, and there is a single pa-
rameter (the shunt fraction) to explain all blood flow
that bypasses areas of gas exchange in the lung. The
model makes inaccurate predictions for the oxygen

concentrations in patients with a pulmonary embolus,
because these patients have perfused areas of the lung
that receive disproportionately less ventilation. A 3-
compartment model cannot represent the mismatch of
the distribution of ventilation and perfusion, and can-
not predict the consequences of such mismatch.
Similarly, the lack of a detailed model of the airways
(the airway assumption) means that this model is poor-
ly able to make predictions for patients who have ab-
normal airways. For example, the model makes poor
predictions of airway pressures and oxygen concentra-
tions for patients with pulmonary fibrosis, who have
markedly decreased thoracic compliance.

VentSim: An Expanded Physiologic Model
I initially implemented VentSim as an interactive sim-
ulator, to allow a user to explore the effects of alterna-
tive ventilator settings for a wide range of simulated
patients with varying physiologic abnormalities. Vent-
Sim is a ventilator and patient simulation model that
expands the VentPlan model and retracts all three
VentPlan assumptions. VentSim includes multiple VA/
Q compartments, an explicit model of distribution of
airway resistance and lung compliance, and a detailed
model of the mechanical ventilator.
Although VentSim is too computation-intensive to be
used at the inner loop of the control algorithm for a
VMA, it is a reference model from which I derive in-
termediate models by applying subsets ofthe VentPlan
simplifying assumptions.

Intermediate models in the GoM
The intermediate models in the GoM make either one
or two of the VentPlan assumptions, and so they are in-
termediate in their level of detail and in their level of
computation complexity.
For example, model MCAV differs from MCAV only in
that MCAV makes the ventilator assumption. This as-
sumption is valid when the inspiration to expiration ra-
tio is close to 0.5, and when there is little asymmetry
in the resistance of the airways and compliance of the
lungs.

Computation Complexity in the GoM
The simplest models in this GoM are solved rapidly
using numerical techniques to search for the roots their
steady-state equations. The models that contain the ex-
panded ventilator component have no analytic steady-
state solution, and-must be solved using the more com-
putation-intensive technique of numeric integration.
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Applying Physiologic Models to Quantitative Data
To make a model patient-specific, the model parame-
ters are fitted to the data. When there are few observa-
tions, the parameters may be underdetermined.
Empirical Bayes' estimation avoids this problem by
adjusting a prior distribution for each model parameter
to obtain an approximate posterior parameter distribu-
tion in light of the observations. In other words, the fit-
ted parameter values are moved from the modes of
their prior distributions only as much as is needed to
make the model predict the observations. In the pres-
ence of few quantitative observations, the model
makes predictions that are typical of patients who are
described by the prior distributions [17].
I implemented this method as a modified Levenberg-
Marquardt fitting procedure, in which prior distribu-
tions on the fitted parameters are treated as ifthey were
observations of the parameters [12,21]. The VentPlan
prototype VMA implemented a similar technique [ 18].

RESULTS
I generated simulated patient data by setting the pa-
rameters of the base model to values that corresponded
to varying abnormalities in the airways, VA/Q distribu-
tion, shunt fraction, and cardiac output. I then added
zero-mean, normally distributed noise to these data,
and computed the fit of each model to the data.
The results of fitting models Mcav and MCAV to data
from a simulated patient with no significant abnormal-
ity, and to data from a simulated patient with a moder-
ately severe airway abnormality and a severe VA/Q
mismatch are shown in Figure 2. These graphs demon-
strate that, for some physiologic states, the least com-
plex model in the GoM makes accurate predictions
(Figure 2a), while for other abnormalities, only more
complex models are able to explain the observations
and make accurate predictions (Figure 2b,2c).
In Figure 3, the benefits are plotted against the costs
for the fit of all models to the data shown in Figure 2a.
This graph displays the information required to assess
the optimal model to select at t = 0. The plot shows
there is wide variation in benefit/cost ratios for the
models in this GoM, and shows that Mcav has a benefit/
cost advantage over the other models in the GoM, even
though Mcav does not provide the highest benefit.
For the data in Figure 2a, the model-selection algo-
rithm began by fitting the simplest model, Mcav. The
algorithm then fit Mcav, and MCAV, but with no im-
provement in the benefit (these fits required a total of
5.02 minutes to complete). At that point, the algorithm
selected Mcav, since no other model could provide a
benefit equal to the expected cost of further computa-
tion, even if it provided a perfect fit to the data.
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Figure 2. Model fitting to noisy observations of 2
simulated patients. a) Fit of model Mcav (the
VentPlan model) to data generated by a simulated
patient with no significant abnormality. b) Fit of
model Mcav to data generated by a simulated patient
with a ventilation-perfusion abnormality and with
abnormal airways. c) Fit of model MCAV to the same
data as in b), and using the same set of parameter
priors for the fit. Note that the more complex model
MCAV fits the more complex patient more accurately
than does Mcav. Legend: solid lines: plot of model
with the fitted parameter values; short dashed lines:
true behavior of the simulated patient beyond the
region of data observations; crosses: simulated
patient observations. The vertical length of the
crosses is the standard deviation of the normally
distributed noise.

For the data in Figure 2b, the algorithm first evaluated
Mcav, then MCAV and finally Mcav. These 3 models all
fit the data poorly, with benefits of less than 1044, and
the algorithm stopped, declaring no model selection
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Figure 3. Model benefit versus model cost. For each
model fitted to the data shown in Figure 2a), the
value of the calculated benefit (Equation 6) is
plotted against the cost of the time to fit the model to
the data (tmrdel). The solid line shows the cost of
time function (Equation 1) with C=0. 1, k=5 minutes
and tve,rch =1 minute.

within the time constraint. Interestingly, the next mod-
el that would be tested if the time constraint were re-
laxed, (MCAV) represented the best benefit/cost
tradeoff, with a benefit of 0.004 and a computation
time (tm.)del) of 6.5 minutes.
This second case demonstrates the potential impact
that the belief network may have, if the network com-
putes prior probabilities < 1-8A for the less complex
models when other information-such as a clinical di-
agnosis-suggests that less complex models will be
inaccurate.

DISCUSSION
Finding the appropriate assumptions and simplifica-
tions that will lead to tractable, yet accurate, models is
a difficult task, requiring knowledge of statistical and
numerical methods, experience in model building, and
expertise in the domain of the application. Traditional-
ly, model-building experts have hand-crafted simula-
tion models of complex domains to meet the required
accuracy of a specified task with a minimum of com-
plexity.
Prior implementations of the GoM have been restrict-
ed to qualitative or semi-quantitative models in physi-
cal domains. This paper presents a methodology for
reasoning with sets of continuous models of complex,
highly nonlinear systems.
The GoM is a powerful structure to reason with alter-
native models, but requires that the models be enumer-
ated in advance. An approach to model selection that
does not require the prior enumeration of the alterna-
tive models involves composing models from individ-
ually selected components, or submodels [4,9].
Because the rules constraining the selection of model
components are a form of simplifying assumptions,
compositional modeling is analogous to search in the

GoM. Compositional modeling is a search in a concep-
tual GoM that consists of all valid combinations of
model components.
The compositional approach requires that the compo-
nents of the model do not have strong interactions-
the models must be decomposable. Unfortunately, in
the domain of cardiopulmonary physiologic models,
the model components interact strongly, and the com-
positional technique is not directly applicable.
I represent the constraints on model adequacy in a be-
lief network that combines all constraints to compute a
prior distribution over the set of available models. This
prior distribution focuses the initial search on candi-
dates with no violated constraints. The search metric
requires that the system fit individual models to the
data to compute a posterior probability of model ade-
quacy. Although the fitting procedure is computation-
intensive (especially for the more complex models),
the search algorithm ensures that the least complex
models that may be adequate are investigated first.
The physiologic models included in the GoM for a
VMA are based on relatively simple, and agreed-upon
concepts of physiology- the most complex model in
the graph does not approach the level of detail of our
understanding of the relevant physiologic processes.
Models do not have to be particularly sophisticated to
be of benefit, however-even linear regression models
provide some predictive power in this domain. The
simple model in VentPlan provided surprisingly good
predictions for a subset of patients in the ICU [14], and
the additional levels of detail in any of the more com-
plex models in theVMAGoM should improve the per-
formance of a VMA that incorporates them.
The architecture for the GoM that I propose has, at the
top, a base model-the most complete and complex
model that is implemented [22]. Although this model
may not be tractable for a real time application, it is a
reference against which the performance of less de-
tailed models can be compared. In my formulation, the
less complex models are approximations of the base
model that are derived by applying simplifying as-
sumptions to it.
The purpose of reasoning with the GoM is to find a
model that is less complex than the base model, but
that computes, within the time constraints, predictions
that are nearly as good as those of the base model.
The performance evaluation for my dynamic selection
of models method asks "If I have a base model, can I
select a less complex model that gives a better tradeoff
of prediction accuracy and computation time complex-
ity?" How well this model-selection method works is
not dependent on whether or not the base model itself
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is valid. For this reason, I have not performed an as-
sessment of the validity of the base model in the first
phase of this research.
The next phase of this research will include a valida-
tion of the prediction accuracy for the selected models,
using patient data collected from an online ICU com-
puter charting system, and an assessment of the impact
of the belief network on model-search performance.
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